Як знайти гіпотенузу прямокутного трикутника
Серед численних розрахунків, вироблених для обчислення тих чи інших величин різних геометричних фігур, тобто знаходження гіпотенузи трикутника. Нагадаємо, що трикутником називається багатогранник, що має три кути. Нижче будуть приведені кілька способів розрахунку гіпотенузи різних трикутників.
Спочатку подивимося, як знайти гіпотенузу прямокутного трикутника. Для тих, хто призабув, прямокутним називається трикутник, що має кут 90 градусів. Сторона трикутника, розташована на протилежному боці прямого кута, називається гіпотенузою. До того ж, вона є найбільш довгою стороною трикутника. Залежно від відомих величин довжина гіпотенузи розраховується наступним чином:
- Відомі довжини катетів. Гіпотенуза у цьому випадку обчислюється, використовуючи теорему Піфагора, яка звучить наступним чином: квадрат гіпотенузи дорівнює сумі квадратів катетів. Якщо розглянути прямокутний трикутник BKF, де BK і KF катети, а FB - гіпотенуза, то FB2 = BK2 + KF2. З вищесказаного випливає, що при розрахунку довжини гіпотенузи потрібно звести почергово в квадрат кожну з величин катетів. Потім скласти повчань цифри і з результату витягти квадратний корінь.
Розглянемо приклад: Дан трикутник з прямим кутом. Один катет дорівнює 3 см, інший 4см. Знайти гіпотенузу. Рішення виглядає наступним чином.
FB2 = BK2 + KF2 = (3 см) 2+ (4см) 2 = 9см2 + 16см2 = 25 см2. Витягаємо квадратний корінь і отримуємо FB = 5см.
- Відомий катет (BK) і кут, прилегла до нього, який утворюється гипотенузой і цим катетом. Як знайти гіпотенузу трикутника? Позначимо відомий кут alpha-. Відповідно до властивості прямокутного трикутника, яке свідчить, що відношення довжини катета до довжини гіпотенузи дорівнює косинусу кута між цим катетом і гіпотенузою. Розглядаючи трикутник це можна записати так: FB = BK * cos (alpha-).
- Відомий катет (KF) і той же кут alpha-, тільки тепер він вже буде протилежним. Як знайти гіпотенузу в цьому випадку? Звернемося до тих самих властивостям прямокутного трикутника і дізнаємося, що відношення довжини катета до довжини гіпотенузи дорівнює синусу протилежного катета кута. Тобто FB = KF * sin (alpha-).
Розглянемо на прикладі. Дан все той же прямокутний трикутник BKF з гіпотенузою FB. Нехай кут F дорівнює 30 градусам, другий кут B відповідає 60 градусам. Ще відомий катет BK, довжина якого відповідає 8 см. Обчислити шукану величину можна так:
FB = BK / cos60 = 8 см.
FB = BK / sin30 = 8 см.
- Відомий радіус кола (R), описаної близько трикутника з прямим кутом. Як знайти гіпотенузу при розгляді такого завдання? З властивості кола, описаного навколо трикутника з прямим кутом відомо, що центр такої окружності збігається з точкою гіпотенузи, що розділяє її навпіл. Простими словами - радіус відповідає половині гіпотенузи. Звідси гіпотенуза дорівнює двом радіусам. FB = 2 * R. Якщо ж дана аналогічна задача, в якій відомий не радіус, а медіана, то слід звернути увагу на властивість кола, описаного навколо трикутника з прямим кутом, яке говорить, що радіус дорівнює медіані, проведеної до гіпотенузи. Використовуючи всі ці властивості, завдання вирішується таким же способом.
Якщо стоїть питання, як знайти гіпотенузу рівнобедреного прямокутного трикутника, то необхідно звернеться все до тієї ж теоремі Піфагора. Але, в першу чергу згадаємо, що рівнобедреним трикутником, є трикутник, який має дві однакові сторони. У випадку з прямокутним трикутником однаковими сторонами є катети. Маємо FB2 = BK2 + KF2, але, так як BK = KF маємо наступне: FB2 = 2 BK2, FB = BKradic-2
Як бачите, знаючи теорему Піфагора і властивості прямокутного трикутника, вирішити завдання, при яких необхідно обчислити довжину гіпотенузи, дуже просто. Якщо ж всі властивості запам`ятати складно, вивчіть готові формули, підставивши в які відомі значення можна буде розрахувати шукану довжину гіпотенузи.